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LE'ITER TO THE EDITOR 

A phase transition in the dynamics of an exact model for 
hopping transport 

Shlomo Havlint, Benes L Trus and George H Weiss 
National Institutes of Health, Bethesda, MD 20892, USA 

Received 12 May 1986 

Abstract. We analyse an exact model for hopping transport of a random walker in the 
presence of randomly distributed deep trapping sites. For an exponential distribution of 
the depth of traps we find a phase transition in the diffusive behaviour as a function of 
temperature. We show that above a critical temperature transport is purely diffusive while 
below it, one finds anomalous diffusion characterised by a diffusion exponent that increases 
with decreasing temperature. The analysis combines theory with accurate simulation in 
oge and two dimensions. Our analytical and numerical results indicate that the upper 
critical dimension is d, = 2, i.e. for d 2 d, = 2 the mean-field theory can be applied. 

A number of investigators have proposed and analysed models for dispersive transport 
in amorphous solids [l-51. The principal qualitative features of such transport are 
believed to be governed by the residence of otherwise mobile particles at trapping sites 
until their subsequent release. In particular, it has been shown by cited authors that 
the choice of appropriate residence time densities can lead to anomalous diffusion in 
amorphous solids, i.e. diffusion in which the mean square displacement ( r2 )  is propor- 
tional to t 2 / d w  with d,> 2. Similar ideas have appeared in the literature of chromato- 
graphy [6 ] .  All of the theoretical work on these problems can be regarded as mean-field 
approximations in which the complicated structure of a random medium is modelled 
in terms of translationally invariant residence time densities at the trapping sites. 

In the present letter we present and analyse a model for diffusion in random media 
in the presence of a random concentration, c, of traps that allow release of the particles 
held in them. The release process is assumed to be first order with a rate constant of 
the form 

W = WO exp( - p  V) (1) 
where p = l /(kT),  V is an energy and WO is the (uniform) release rate at infinite 
temperature. The energies, V( r ) ,  in (1) are assumed to be random variables depending 
on the position of the trap, and for the probability density of each V(r) we choose 
the form 

where is the mean value of V. The model represented by (1) and (2) at T=O 
corresponds to pure trapping for which exact results are available [7]. We show that 
there exists a critical temperature, T,, such that for T >  T, the motion of a random 
walker is purely diffusive, i.e. ( r 2 > -  t. When T < T, the diffusion becomes anomalous, 

p ( V ) = ( ~ / V ) e x p ( - v / V )  (2) 

t Permanent address: Department of Physics, Bar-Ilan University, Ramat-Gan, Israel. 
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characterised by a temperature-dependent diffusion exponent, d,, that increases with 
decreasing temperature. The model represented by (1) and (2) cannot be solved exactly 
for any dimension d but a phenomenological theory has been developed and checked 
against accurate simulations in d = 1 and 2, based on the method of exact enumeration 

Several one-dimensional systems were found recently to have a dynamical phase 
transition. (a) The temperature dependence of the dynamical conductivity exponent 
observed in the one-dimensional superionic conductor hollandite was explained [ 101 
as a result of a dynamical phase transition. In this system the conduction by classical 
charge carriers is assumed to be interrupted by barriers with a random distribution of 
activation energies. (b) Anomalous relaxation in spin glasses can be interpreted in 
terms of stochastic motion in phase space with a power law distribution of free energy 
barriers [ll]. This corresponds to diffusion in the presence of a one-dimensional 
hierarchical set of barriers [ 123 for which a dynamical phase transition was found [ 131. 
(c) The problem of biased diffusion in random structures such as the random comb 
or the percolation cluster can be mapped [ 14,151 on biased diffusion in a linear chain 
with a power law distribution of transition rates. In this case a phase transition in the 
dynamics occurs as a function of the bias field. 

The analysis of the present model represents a generalisation and more exact version 
of many models of trap-controlled hopping in amorphous solids [l-51. The earlier 
models contain no analogue of temperature as in (1) and can be regarded as mean-field 
approximations to the present model at a fixed temperature. it is interesting, neverthe- 
less, to see whether a transition between ordinary and anomalous diffusion can be 
expected from the mean-field approximation (MFA)  to the present theory. That MFA 

shows anomalous diffusion when the mean residence time in a trap is infinite. The 
mean residence time for our model is 

~ 8 ,  91. 

(k) = ( 1/ WO v) [om exp[ ( p  - 1, v) VI d V ( 3 )  

which is infinite for T < ( v / k ) .  Thus the mean-field theory predicts a transition as 
does the present theory. It does not permit the calculation of (r') below T, so that we 
cannot expect it to predict the correct diffusion exponents without further assumptions 
being made. Let us first consider the diffusive behaviour and estimate the diffusion 
constant, D, togettier with its dependence on p and Machta [16] and Zwanzig [17] 
have considered the problem of diffusion in one-dimensional random media, finding 
that in the long-time limit the diffusion constant can be expressed as 

where W, is the release rate at site i. In the present case we can rewrite this for large 
N as 

1 1  N 1  
- = - ( 1' -+ (1 - c) N D N j = 1  Wj (5) 

where the prime on the sum indicates that it is to be taken over trapping sites only. 
The sum over W,:' will be 'replaced by 
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where p(  W) is the probability density for the rates and Wmin is the minimum value 
of W. This quantity will be found later. 

The calculation of p(  W) makes use of the relation 

where a = 1 - l/(pV) = 1 - T/ TcS 1 and T, is the critical temperature. Normal 
diffusion occurs either when the integral in (6) is independent of N, i.e. for a < 0, or 
when c = O .  In order to determine the behaviour of the integral it is necessary to 
determine the value to be assigned to the lower limit, Wmin. For this purpose let us 
define a uniformly distributed random variable x by dx = p(  W)d W or 

where K is a normalisation constant. Since the expected value of the average of the 
minimum of cN uniformly distributed random variables is proportional to (cN)- '  it 
follows from (8) that Wmin is proportional to ( C N ) - " ( ~ - ~ )  where OS a < 1. Thus, in 
the limit N + 03, c # 0 the first term on the right-hand side of ( 5 )  is the dominant one 
and D is then related to c and N by 

In one dimension we can identify N with the displacement x, with the result that 

We will interpret this in terms of the mean square displacement by 

The exponent appearing in the LHS of (11 )  has been found earlier by Alexander et al 
[18]. In two dimensions we can identify N, the number of sites sampled, as being 
proportional to (r2) with the possibility of a logarithmic correction. Although the 
validity of (4) has not been established in dimensions greater than one we will assume 
its validity in all dimensions. Since our simulation results are in good agreement with 
the theory developed on the basis of (4) we believe it to be true although so far 
unproven. We find, by a similar argument, 

(12) ( r z ) l / ( l - 4  - c V ( l - a ) .  

Diffusion is normal when (Y = 1 - T/ T, is negative, i.e. when T > T,. When T < T, the 
diffusion exponent, d,, is 

-2T,/T d = 2  
2 I=- 

In both cases d, + 03, as T + 0, as in the limit of pure trapping. 
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The results, (1 I ) - (  13), were tested in one and two dimensions by simulation using 
the exact enumeration method [8,9]. The agreement between numerical and theoretical 
results is shown in figures 1-4 and appears to confirm our theoretical predictions. 
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Figure 1. A log-log plot of ( x 2 ( t ) )  as a function of the number of steps t for a one- 
dimensional lattice and concentration of traps c = 1.0. The different values of TJ T used 
are indicated on the RHS of the figure. The slopes in this plot represent 2 / d ,  and their 
values are given in figure 4. We used lattices with up to 200 sites and averages were made 
over 100 configurations. 
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Figure 2. ( a )  A log-log plot of ( x Z ( t ) )  in one dimension as a function of the number of 
steps r,  with TJ T = 4. The different trap concentrations are indicated by the numbers to 
the right of the lines. ( 6 )  Results for ( ~ ' ( 2 5 0 0 ) )  for the concentrations given in figure 
2 ( a ) .  The circles represent the numerical data and the line represents the theoretical 
prediction, equation (1 1). 

It is noted that although the relation d, = 2 TJ T has been checked by simulation 
in two dimensions, we believe it to be valid in higher dimensions as well. The argument 
is a consequence of the relation between the mean number of distinct sites visited by 
an ordinary random walker and the mean square displacement (r'). The relation in 
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Figure 3. A log-log plot of ( r 2 (  1 ) )  against t for a two-dimensional lattice and concentration 
of traps c = 1.0. The different values of TJ T used are indicated on the right-hand side of 
the figure. Lattices with up to 2 0 0 ~  200 sites were used and averages were taken over 100 
configurations. The values of d,  derived from the slopes of this figure are given in figure 4. 
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Fwre 4. Plot of d,  as a function of T J T  for one (0) and two (0) dimensions. The 
points represent the numerical data obtained from plots in figures 1 and 3, and the lines 
are theoretically predicted values from equation (12). The deviation at T =  T, from the 
theoretical values may be due to logarithmic corrections appearing in equation (12) when 
n = O .  

greater than or equal to three dimensions is ( S n ) - ( r 2 )  which is implicitly the result 
needed to prove equation (12). 

An important consequence of (13) is that the upper critical dimension of the present 
system is d,= 2. This follows from comparing our result (13) to studies of CTRW or 
mean-field theory [ 19-21], which obtain d, = 2/( 1 - a) independent of dimension. That 
is for d 2 d,  = 2, we obtain the mean-field result independent of dimension. 

Several interesting further results and conjectures are raised by the present analysis. 
(i) Our results given in (13) are for the particular probability density P( V) given 

in (1). This raises the question of what is to be expected for other forms of P( V). 
Using similar heuristic arguments we suggest that there are forms for P ( V )  which 
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ensure that a phase transition will not occur. It is possible, however, that more 
complicated relations between ( r 2 )  and t may be valid. For example, when a power 
law distribution is assumed, P (  V) - V-(’+’), we expect that the one-dimensional 
asymptotic relation will be (x’) - (log t)*’ with y a constant. 

(ii) In the presence of a field, the time spent in N sites is of the order of 
t - Xz, (1/ y.): This implies, by using similar arguments, that in any dimension 
d, = T,/T for T <  T, and d, = 1 for T S  T,. This argument is independent of (4) 
whose validity is still conjectural in dimensions greater than one. 

(iii) It is interesting to note that if the system consists of barriers with a power law 
distribution of heights of barriers (not traps as in the present model) a dynamical 
phase transition above one dimension is not expected [22]. This is due to the fact that 
the random walker will always find an ‘easy’ way to travel in the system and regular 
diffusion is expected for each value of CY. 

We gratefully acknowledge financial support from USA-Israel Bi-National Foundation. 
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